
What is Reference in c programming?

In computer science, a reference is a value that enables a program to indirectly access a
particular datum, such as a variable's value or a record, in the computer's memory or in
some other storage device. The reference is said to refer to the datum, and accessing the
datum is called dereferencing the reference.

A reference is distinct from the datum itself. Typically, for references to data stored in memory on
a given system, a reference is implemented as the physical address of where the data is stored
in memory or in the storage device. For this reason, a reference is often erroneously confused
with a pointer or address, and is said to "point to" the data. However, a reference may also be
implemented in other ways, such as the offset (difference) between the datum's address and
some fixed "base" address, as an index into an array, or more abstractly as a handle. More
broadly, in networking, references may be network addresses, such as URLs.

Pointer

A pointer is a variable in C, and pointers value is the address of a memory location.

Pointer Definition in C

Syntax:

type *variable_name;

Example:

int *width;

char *letter;

Benefits of using Pointers in C

 Pointers allow passing of arrays and strings to functions more efficiently.

 Pointers make it possible to return more than one value from the function.

 Pointers reduce the length and complexity of a program.

 Pointers increase the processing speed.

 Pointers save the memory.

How to use pointers in c

Example

#include<stdio.h>

int main ()

{

 int n = 20, *pntr; /* actual and pointer variable declaration */

 pntr = &n; /* store address of n in pointer variable*/

 printf("Address of n variable: %x\n", &n);

https://en.wikipedia.org/wiki/Physical_address
https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Array_index
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Handle_(computing)
https://en.wikipedia.org/wiki/URL

 /* address stored in pointer variable */ printf("Address stored in

pntr variable: %x\n", pntr);

 /* access the value using the pointer */ printf("Value of *pntr

variable: %d\n", *pntr);

 return 0;

}

Address of n variable: 2cb60f04

Address stored in pntr variable: 2cb60f04

Value of *pntr variable: 20

Memory Management in C

C language provides many functions that come in header files to deal with the allocation and management of memories.

 Management of Memory(static memory allocations and. dynamic memory allocations)

Management of Memory

Almost all computer languages can handle system memory. All the variables used in your program occupies a precise memory

space along with the program itself, which needs some memory for storing itself (i.e., its own program). Therefore, managing

memory utmost care is one of the major tasks a programmer must keep in mind while writing codes.

When a variable gets assigned in a memory in one program, that memory location cannot be used by another variable or

another program. So, C language gives us a technique of allocating memory to different variables and programs.

There are two types used for allocating memory. These are:

Static memory allocations

In the static memory allocation technique, allocation of memory is done at compilation time, and it stays the same throughout

the entire run of your program. Neither any changes will be there in the amount of memory nor any change in the location of

memory.

Dynamic memory allocations

In dynamic memory allocation technique, allocation of memory is done at the time of running the program, and it also has the

facility to increase/decrease the memory quantity allocated and can also release or free the memory as and when not required

or used. Reallocation of memory can also be done when required. So, it is more advantageous, and memory can be managed

efficiently.

https://www.w3schools.in/c-tutorial/memory-management/#Management_of_Memory
https://www.w3schools.in/c-tutorial/memory-management/#static_memory_allocations
https://www.w3schools.in/c-tutorial/memory-management/#dynamic_memory_allocations

Dynamic Memory Allocation

malloc, calloc, or realloc are the three functions used to manipulate memory. These commonly used functions are available

through the stdlib library so you must include this library to use them.

. C - Dynamic memory allocation functions

. malloc function

. Example program for malloc() in C

. calloc function

. Example program for calloc() in C

. realloc function

. free function

. Example program for realloc() and free()

C - Dynamic memory allocation functions

Function Syntax

malloc() malloc (number *sizeof(int));

calloc() calloc (number, sizeof(int));

realloc() realloc (pointer_name, number * sizeof(int));

free() free (pointer_name);

malloc function

 malloc function is used to allocate space in memory during the execution of the program.

 malloc function does not initialize the memory allocated during execution. It carries garbage value.

 malloc function returns null pointer if it couldn't able to allocate requested amount of memory.

Example program for malloc() in C
Example:

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

int main()

{

char *mem_alloc;

https://www.w3schools.in/c-tutorial/dynamic-memory-allocation/#C_-_Dynamic_memory_allocation_functions
https://www.w3schools.in/c-tutorial/dynamic-memory-allocation/#malloc_function
https://www.w3schools.in/c-tutorial/dynamic-memory-allocation/#Example_program_for_malloc_in_C
https://www.w3schools.in/c-tutorial/dynamic-memory-allocation/#calloc_function
https://www.w3schools.in/c-tutorial/dynamic-memory-allocation/#Example_program_for_calloc_in_C
https://www.w3schools.in/c-tutorial/dynamic-memory-allocation/#realloc_function
https://www.w3schools.in/c-tutorial/dynamic-memory-allocation/#free_function
https://www.w3schools.in/c-tutorial/dynamic-memory-allocation/#Example_program_for_realloc_and_free

/* memory allocated dynamically */mem_alloc = malloc(15 * sizeof(char));

if(mem_alloc== NULL)

{

printf("Couldn't able to allocate requested memory\n");

}

else

{

strcpy(mem_alloc,"MYPROGRAM.in");

}

printf("Dynamically allocated memory content : %s\n", mem_alloc);

free(mem_alloc);

}

Program Output:

Dynamically allocated memory content : MYPROGRAM.in

Calloc function

 calloc () function and malloc () function is similar. But calloc () allocates memory for zero-initializes. However, malloc () does
not.

Example program for calloc() in C
Example:

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

int main()

{

char *mem_alloc;

/* memory allocated dynamically */mem_alloc = calloc(15, sizeof(char));

if(mem_alloc== NULL)

{

printf("Couldn't able to allocate requested memory\n");

}

else

{

strcpy(mem_alloc,"myprogram.in");

}

printf("Dynamically allocated memory content : %s\n", mem_alloc);

free(mem_alloc);

}

Program Output:

Dynamically allocated memory content : myprogram.in

realloc function

 realloc function modifies the allocated memory size by malloc and calloc functions to new size.

 If enough space doesn't exist in the memory of current block to extend, a new block is allocated for the full size of reallocation,
then copies the existing data to the new block and then frees the old block.

free function

 free function frees the allocated memory by malloc (), calloc (), realloc () functions.

Example program for realloc() and free()
Example:

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

int main()

{

char *mem_alloc;

/* memory allocated dynamically */mem_alloc = malloc(20 * sizeof(char));

if(mem_alloc == NULL)

{

printf("Couldn't able to allocate requested memory\n");

}

else

{

strcpy(mem_alloc,"myprogram.in");

}

printf("Dynamically allocated memory content : " \ "%s\n", mem_alloc);

mem_alloc=realloc(mem_alloc,100*sizeof(char));

if(mem_alloc == NULL)

{

printf("Couldn't able to allocate requested memory\n");

}

else

{

strcpy(mem_alloc,"space is extended upto 100 characters");

}

printf("Resized memory : %s\n", mem_alloc);

free(mem_alloc);

}

Program Output:

Dynamically allocated memory content : myprogram.in

Resized memory: space is extended up to 100 characters

	Pointer Definition in C
	Benefits of using Pointers in C
	Management of Memory
	Static memory allocations
	Dynamic memory allocations
	Dynamic Memory Allocation

	C - Dynamic memory allocation functions
	malloc function
	Example program for malloc() in C
	Example program for calloc() in C

	realloc function
	free function
	Example program for realloc() and free()

